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LElTER TO THE EDITOR 

Non-monotonic conductivity in a conductor-insulator h i d  
mixture 

R B Pandey? 
Institute for Theoretical Physics, Cologne University, D-5000 Cologne 41, F-deral Republic 
of Germany 

Received 29 October 1987 

Abstract. Charge transport in a stirred percolating system of a conductor-insulator mixture 
( a  model for the microemulsion) is studied by computer simulation in two dimensions. 
The flow of charge from source to sink via nearest-neighbour charge exchange on the 
transient network o f  the conducting particles is considered. For the particle jump accom- 
panied by a local charge transfer, the conductivity depends non-monotonically on the 
concentration p o f  the conducting particles and exhibits a maximum near the percolation 
threshold. The maximum vanishes and the conductivity rises with concentration p with a 
non-universal power csn increasing the frequency of charge exchange. 

Recently there has been increasing interest in studying transport phenomena, par- 
ticularly diffusion and conductivity, in immiscible fluids modelled by stirred percolation 
[ 1-81. In a conductor-insulator binary mixture [ 9 ] ,  one of the most addressed questions 
by computer simulation [3-51 :is well as by analytic methods [4,5,7,8] is: how does 
the conductivity depend upon the concentration of the conducting constituents? To 
address this issue let us consider such ;I binary mixture of conducting particles A and 
insulating particles B, of concentrations p and 1 - p respectively, distributed randomly 
on a discrete lattice where no site at any time can be occupied by more than one 
particle. Sites occupied by A particler provide paths for conduction and are called 
occupied sites while those sites occupied by B particles are called vacant as they block 
the conduction. Conducting particles are in constant stochastic motion and so are 
their vacancies, the particles at the 13 sites in a correlated fashion (see the model 
described below). A particles, starting at one end, have a finite probability of reaching 
the other end as long as p is non-zero. In most of the previous studies it was found 
that the conductivity increases monotonically on increasing the concentration p as the 
probability of forming the larger transient conducting network increases with the 
exception of interacting diffusion in static percolation [ 10, 111. Above the percolation 
threshold p c ,  there is at any fixed moment an infinite transient path which extends 
from one end of the system to the other. The conductivity increases as a function of 
p as the number of transient paths increases. Thus in the previous studies [3,5,7], 
the monotonic increase of the conductivity with concentration p was accounted for 
by the number of conducting paths where the details of the charge transport mechanism 
was not emphasised. Here, we present a computer simulation model for the charge 
transport in addition to particle transport in such a stirred system; this model shows 
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a non-monotonic dependence of the conductivity on the concentration of the conducting 
particles. 

We consider a two-dimensional lattice of N sites with N = LJ,.  where L ,  and L, 
are the length and width of the system. At a concentration p ,  we randomly distribute 
No ( = p N )  numbers of A particles with one particle per site. One end, say the left 
end, of the sample is connected with a source of charges while the opposite end (the 
right side) is grounded with the sink of zero charge. Each set of particles is assigned 
a charge density; particles in contact with the left end are assigned unit charge density, 
those in contact with the sink are assigned zero charge density and the rest of the 
mobile particles in the bulk are assigned a charge density of half initially. To maintain 
the charge neutrality there are always negative charges (equal in number) in the system 
but we are not considering them here for simplicity. All these N ,  particles attempt 
stochastic motion with one attempt at random hopping by each particle per unit time 
step which is implemented as follows: we choose one of the N, particles, say at site 
i and one of its neighbouring sites j randomly. If site j is vacant then the particle at 
site i is moved to s i t e j  and therefore the vacancy is automatically moved from site j 
to site i. On the other hand, if site j is occupied, then the particle stays at site i but 
the time step is increased in either case. A jump is accompanied by a charge transfer. 
Suppose the particle of charge density po has hopped from site i to site j which has 
n nearest neighbours of charge densities p ,  , p 2 ,  . . . , p n ,  then the charge density of all 
these ( n +  1) sites (i.e. the site at j along with its neighbours) becomes p = 
( p o + p , + p 2 +  . . . + p , , ) j ( n + l ) .  (Here, on the ZD lattice n varies between zero and 
three.) Of these ( n  + 1) particles, those in contact with the source (i.e. the leftmost 
column of the lattice) have their densities set to unity and the charge transfer (1 - p )  
for each site is added to the total charge released from the source; those particles in 
touch with the sink have their densities set to zero and the charge transfer p for each 
site is added to the total charge absorbed by the sink. The whole process of (i) randomly 
choosing a particle, ( i i )  attempting to move it to its neighbouring site chosen randomly, 
( i i i )  redistributing the charges among the neighbouring occupied sites and (iv) updating 
the amount of charge released and absorbed is repeated again and again until a desired 
number of steps is reached. Up to a million steps are used in this simulation. 

The simulation is performed on various lattice sizes and at several concentrations 
p of the occupied sites in each of the lattice. Strips with various aspect ratios 
L , / L ,  (=1-15) are chosen to see the effects observed in a previous simulation [6]. We 
must emphasise that the charge transfer takes place here only via nearest-neighbour 
charge exchange and this feature is different from the simulation of Kerstein and 
Pandey [6] where charge exchange takes place with all the particles in the transient 
cluster instantaneously. There are two transport processes: ( i )  the particle transport 
accompanied by ( i i )  the charge exchange. The local charge spread via nearest-neigh- 
bour particles introduces a time delay or relaxation time for the charge transport in a 
cluster where, as in [6], this relaxation was instantaneous. The charge transfer, from 
source to sink, through the transient network of the particles, eventually equilibrates 
to a steady state in which the charge released per unit time from the source is equal 
to the charge absorbed per unit time at the sink. From the construction of this model, 
it appears that it may take a longer time for the charge distribution to equilibrate here 
than that found in [6]. The spatial charge distribution is observed to be more 
homogeneous in the present model (see the histogram presented in figure 1). Moreover, 
this model is computationally more efficient and at least six times faster on a scalar 
machine than the model of [6]. 
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Figure 1. Charge density averaged over each square of size L,L, plotted against the aspect 
ratio L x /  L, for the sample 225 x 15 at concentration p = 0.59 at time 5 x 10’. 

A plot of the total charge released from the source and the total charge absorbed 
at the sink against time is shown in figure 2. Such a smooth steady state achieved in 
this model with a constant charge density gradient assures the reliability of the data 
(see below). We know that, in the steady state, the conductivity U is proportional to 
j / S p  where the charge density gradient 6p equals 1/L, and the charge flux or the 
current density j is Q/L, t ,  where Q is the charge transfer in time t. This gives us 
Q-u , t  with o,=o(L,/L,). Thus, from the slope of the Q against t plot, we can 
evaluate U, and therefore U. We have calculated the conductivity this way at several 
concentrations for various lattices and a plot of its variation with concentration p is 
presented in figure 3. Clearly, the conductivity increases on increasing the concentration 
p from zero, but above a characteristic concentration p - 0.64 it starts decreasing. Such 
a non-monotonic dependence of conductivity on the concentration of the occupied 

Time, t(x105) 

Figure 2. Total charge released from the source ( A )  and the total charge absorbed at the 
sink (0) plotted against time for the sample 225 x 15 at concentration p = 0.59. 
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Figure 3. Conductivity n plotted against concentration p for lattices of different aspect 
ratios 1 5 ( 7 5 ~ 5 ( 0 ) , 1 0 5 ~ 7 ( @ ) ,  1 5 0 ~ 1 0 ( - 0 - ) , 2 2 5 ~ 1 5 ( ~ ) ) ;  l 0 (50x5 (E i ) ) ,70x7 (0 ) ,  
120x12 (A)), 5 (75x 15 (4)) and 1 (20x20 (A) ,  30x30 (U), 60x60 (0) ) .  

sites is observed for the first time (as far as we know) in the computer simulations for 
stirred systems and it is worth examining this effect here. We must point out that the 
percolation thresholds for the onset of the infinite links along the x and y directions 
of the strip are different and depend upon the aspect ratio L, /L ,  [12]. However, the 
observed maxima in the conductivity at about p - 0.64 is considerably higher [ 121 than 
the percolation threshold for the square lattice p c  = 0.59. Moreover, we observe that 
data from all lattice sizes are collapsed almost on the same curve. This shows that the 
non-monotonic effect on the conductivity as a function of concentration of the conduct- 
ing particles is independent of the finite size and that the maximum is not a critical 
divergence in the statistical limit of infinite system size. 

The conducting particles are crucial in carrying the charges from the source and 
delivering them to the sink via nearest-neighbour hopping and charge exchange. 
Obviously there will be no charge transport in the absence of these particles. For the 
model considered here, the amount of charge transfer per unit time is proportional to 
the number of successful attempts to hop per unit time step (as mentioned earlier, a 
unit time step is defined as the time for which each particle, on average, has attempted 
a nearest-neighbour move). At small concentrations p of the occupied sites (i.e. A 
particles), there are ample vacant sites available for the jump and therefore the number 
of successful hops n, is proportional to the number of particles, as most of the particles 
have high probability for nearest-neighbour hopping. Increasing the concentration p 
reduces the concentration of vacancies which decreases the number of successful 
jumps; the presence of A particles itself acts as a barrier for transport of these particles. 
For p above the characteristic Concentration p - 0.64, the number of successful jumps 
is limited to the number of vacancies Nh = N - N, which decreases on increasing p 
and this reduces the charge transfer per unit time, i.e. the conductivity. A similar 
explanation was given in a different context for interacting diffusion on a quenched 
percolating lattice [ 113. A precise description beyond these qualitative arguments for 
the dependence of the conductivity on the concentration p of the conducting particles 
and the appearance of maxima is highly desirable. We hope this letter will stimulate 
interest towards establishing such a relation. 
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Figure 4. Conductivity plotted against concentration p for various f; the frequency of 
charge transfer, which is defined as the number of attempts to exchange the charges after 
each hopping attempt of the conducting particles. The lattice 75 x 5 is used for times up 
to 5 x IO6 steps at the following frequencies: f=O. l (A) ,  0.5 (A), 1.0 (O) ,  2.0 (O) ,  5.0 (0) 
and 10.0 (4). At f = 2 . 0  lattices 105x7 (.) and 120x 12 (U) are used for time steps up 
to 5 x lo5 and 3 x lo', respectively, to check the finite-size effect. 

Data for the conductivity at higher frequency of the charge transfer indicate that 
the conductivity increases with concentration p of the conducting particles (see figure 
4). The slope of conductivity against concentration p seems to depend strongly on the 
frequency of charge transfer. A non-universal power law dependence of conductivity 
on concentration p and the frequency of charge transfer is evident from figure 4, a 
detailed study of which will be published elsewhere. 
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